Database Learning: Toward a Database that Becomes Smarter Every Time

Presented by: Huanyi Chen

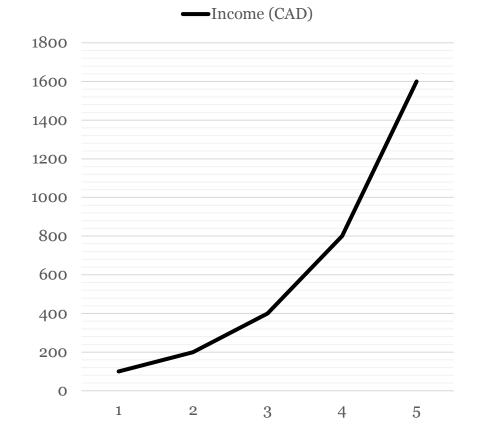
Where does the data come from?

- Real world
- The entire dataset follows certain underlying distribution

Income of a shop

# of Day	Income (CAD)
1	100
2	200
3	400
4	800
5	1600

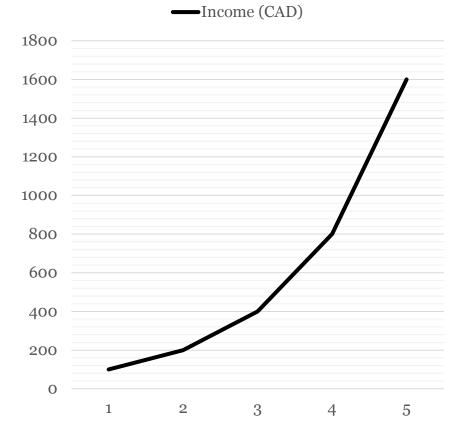
Income of a shop per day



Income of a shop

# of Day	Income (CAD)
1	100
2	200
3	400
4	400 800
5	1600
6	?

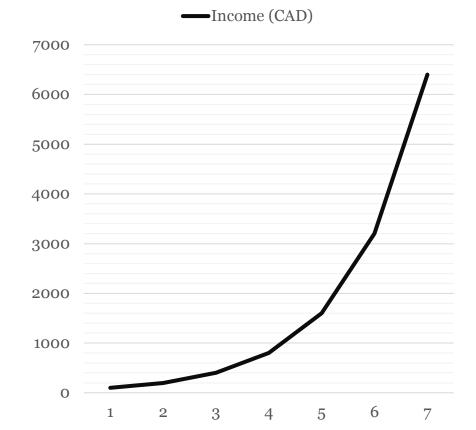
Income of a shop per day



Income of a shop

- $Income = 50 * 2^n (n = 1, 2, 3 ...)$
- No database needed if we can find the underlying distribution

Income of a shop per day



Which distribution do we care?

- The exact underlying distribution that generates the entire dataset and future unseen data?
 - Not possible
- An exact underlying distribution that generates the entire dataset but excludes future unseen data?
 - Benefits nothing. One can always make a model by using every value of a column, but this model is not able to predict anything. We still need to store future data in order to answer queries.
- A possible distribution that generates the entire dataset and future unseen data!

Mismatching data

- A possible distribution that generates the entire dataset and future unseen data is not able to match every data in the dataset
 - Not work when the accurate query results needed
 - Works in Approximate query processing (AQP)

Approximate Query Processing (AQP)

- Trade accuracy for response time
- Results are based on samples
- Previous query results have no help in future queries
 - so it comes Database Learning learning from past query answers!

Database Learning Engine: Verdict

Target

 Improve future query answers by using previous query answers from an AQP engine

Workflow

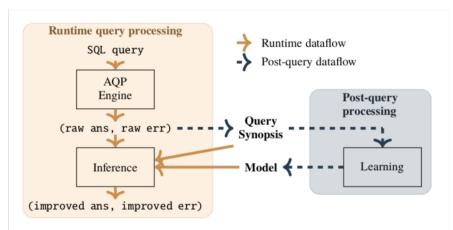
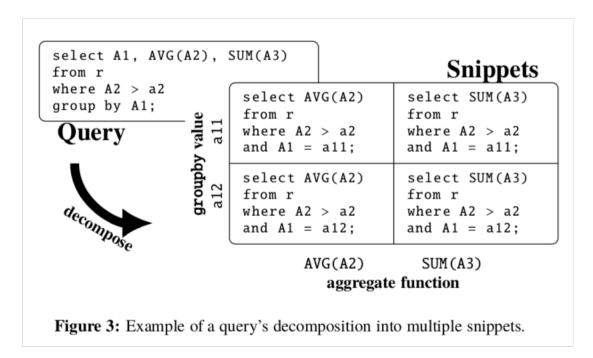


Figure 2: Workflow in Verdict. At query time, the Inference module uses the *Query Synopsis* and the *Model* to improve the query answer and error computed by the underlying AQP engine (i.e., *raw answer/error*) before returning them to the user. Each time a query is processed, the raw answer and error are added to the *Query Synopsis*. The Learning module uses this updated *Query Synopsis* to refine the current *Model* accordingly.

Verdict

- A query is decomposed into possibly multiple query snippets
 - the answer of a snippet is a single scalar value



Verdict

- A query is decomposed into possibly multiple query snippets
- Verdict exploits potential correlations between snippet answers to infer the answer of a new snippet

	# of Day	Income (CAD)	_
old avg	1	100	
	2	200	
	3	400	new avg
	4	800	
	5	1600	

old avg and new avg are correlated

Inference

• observations + rules = prediction

	Observations	Rules	Prediction
Shop Income	100, 200, 400, 800, 1600	$Income = 50 * 2^n$	3200, 6400,
Fibonacci	Initial: 1, 1	$F_n = F_{n-2} + F_{n-1}$	2, 3, 5, 8,
Verdict	Past snippet answers from AQP + AQP answer for the new snippet	Maximize the conditional joint probability distribution function (pdf)	Improved answer and error for new snippet

Inference: pdf

Sym.	Meaning	
$\overline{q_i}$	<i>i</i> -th (supported) query snippet	
n + 1	index number for a new snippet	
$oldsymbol{ heta}_i$	random variable representing our knowledge of the raw answer to q_i	
$ heta_i$	(actual) raw answer computed by AQP engine for q_i	
eta_i	expected error associated with θ_i	
$ar{ heta}_i$	random variable representing our knowledge of the \emph{exact} answer to $\emph{q}_\emph{i}$	
$ar{ heta}_i$	exact answer to q_i	
$\widehat{\theta}_{n+1}$	improved answer to the new snippet	
$\widehat{\beta}_{n+1}$	improved error to the new snippet	
Table 2: Mathematical Notations.		

Table 2: Mathematical Notations.

If we have
$$f(\boldsymbol{\theta_1} = \theta_1', ..., \boldsymbol{\theta_{n+1}} = \theta_{n+1}', \overline{\boldsymbol{\theta}}_{n+1} = \overline{\theta}'_{n+1})$$

then the prediction is the value of $\bar{\theta}'_{n+1}$ that maximizes

$$f(\overline{\boldsymbol{\theta}}_{n+1} = \overline{\theta}'_{n+1} \mid \boldsymbol{\theta_1} = \theta_1, \dots, \boldsymbol{\theta_{n+1}} = \theta_{n+1})$$

Inference: pdf

- How to find the pdf?
 - maximum entropy (ME) principal

•
$$h(f) = -\int f(\vec{\theta}) \cdot \log f(\vec{\theta}) d\vec{\theta}$$
, where $\vec{\theta} = (\theta'_1, \dots, \theta'_{n+1}, \bar{\theta}'_{n+1})$

- The joint pdf maximizing the above entropy differs depending on the kinds of given testable information
 - Verdict uses the first and the second order statistics of the random variables: mean, variances, and covariances.

Inference: pdf

Lemma 1. Let $\theta = (\theta_1, \dots, \theta_{n+1}, \bar{\theta}_{n+1})^{\mathsf{T}}$ be a vector of n+2 random variables with mean values $\vec{\mu} = (\mu_1, \dots, \mu_{n+1}, \bar{\mu}_{n+1})^{\mathsf{T}}$ and a $(n+2)\times(n+2)$ covariance matrix Σ specifying their variances and pairwise covariances. The joint pdf f over these random variables that maximizes h(f) while satisfying the provided means, variances, and covariances is the following function:

$$f(\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{n+2}|\Sigma|}} \exp\left(-\frac{1}{2}(\vec{\theta} - \vec{\mu})^{\mathsf{T}} \Sigma^{-1}(\vec{\theta} - \vec{\mu})\right)$$

and this solution is unique.

Inference: model-based answer and error

Generally

$$\ddot{\theta}_{n+1} = \underset{\bar{\theta}'_{n+1}}{\operatorname{Arg}} \operatorname{Max} \ f(\bar{\theta}'_{n+1} \mid \boldsymbol{\theta}_1 = \theta_1, \dots, \boldsymbol{\theta}_{n+1} = \theta_{n+1})$$

Computing above conditional pdf may be a computationally expensive task

Inference: model-based answer and error

However, computing the conditional pdf in lemma 1 is not expensive and computable; the result is another normal distribution.

The mean μ_c and variance σ_c^2 are given by:

$$\mu_{c} = \bar{\mu}_{n+1} + \vec{k}_{n+1}^{\mathsf{T}} \Sigma_{n+1}^{-1} (\vec{\theta}_{n+1} - \vec{\mu}_{n+1})$$

$$\sigma_{c}^{2} = \bar{\kappa}^{2} - \vec{k}_{n+1}^{\mathsf{T}} \Sigma_{n+1}^{-1} \vec{k}_{n+1}$$

where:

- \vec{k}_{n+1} is a column vector of length n+1 whose *i*-th element is (i, n+2)-th entry of Σ ;
- Σ_{n+1} is a $(n+1) \times (n+1)$ submatrix of Σ consisting of Σ 's first n+1 rows and columns;
- $\bullet \ \vec{\theta}_{n+1} = (\theta_1, \dots, \theta_{n+1})^{\mathsf{T}};$
- $\vec{\mu}_{n+1} = (\mu_1, \dots, \mu_{n+1})^{\mathsf{T}}$; and
- $\bar{\kappa}^2$ is the (n+2, n+2)-th entry of Σ

Inference: model-based answer and error

Model-based answer

$$\bullet \ \ddot{\theta}_{n+1} = \mu_c$$

- Model-based error
 - $\ddot{\beta}_{n+1} = \sigma_c$
- Improved answer and error
 - $(\hat{\theta}_{n+1}, \hat{\beta}_{n+1}) = (\ddot{\theta}_{n+1}, \ddot{\beta}_{n+1})$ (if validation succeed)
 - $(\hat{\theta}_{n+1}, \hat{\beta}_{n+1}) = (\theta_{n+1}, \beta_{n+1})$ (if validation failed, return AQP answers)

- mean $(\vec{\mu})$
 - the arithmetic mean of the past query answers for the mean of each random variable, $\theta_1, ..., \theta_{n+1}, \overline{\theta}_{n+1}$.
- variances, and covariances (Σ)
 - the covariance between two query snippet answers is computable using the covariances between the attribute values involved in computing those answers

	# of Day	Income (CAD)	_
old avg	1	100	
	2	200	
	3	400	new avg
	4	800	
	5	1600	

old avg and new avg are correlated

Inter-tuple Covariances

# of Day	Income (CAD)	Income (CAD)
1	100	100
2	200	200
3	400	400
4	800	800
5	1600	1600

- Estimate the inter-tuple covariances
 - analytical covariance functions
 - squared exponential covariance functions: capable of approximating any continuous target function arbitrarily closely as the number of observations (here, query answers) increases
 - compute variances, and covariances (Σ) efficiently

Experiments

- Up to 23× speedup for the same accuracy level
- Small memory and computational overhead

Summary

- An idea: Database Learning
 - learning from past query answers
- An implementation: Verdict
 - Given mean, variances, and covariances
 - Apply maximum entropy principal
 - Find a joint probability distribution function
 - Improve answer and error based on conditioning on snippet answers
 - https://verdictdb.org

Q & A

- Using testable information other than or in addition to mean, variances, covariances?
- Are there any other possible inferential techniques?
- Can we cut out training phase?

